Translation status

983 Strings 100% Translate
12,760 Words 100%

Other components

Component Translated Untranslated Untranslated words Checks Suggestions Comments
text/sbasic/shared This component is linked to the LibreOffice Help – 7.0/auxiliary repository. MPL-2.0 35% 3,092 30,522
text/scalc/01 This component is linked to the LibreOffice Help – 7.0/auxiliary repository. MPL-2.0 46% 4,041 53,149
text/sbasic/python This component is linked to the LibreOffice Help – 7.0/auxiliary repository. MPL-2.0 48% 196 2,642
text/shared/01 This component is linked to the LibreOffice Help – 7.0/auxiliary repository. MPL-2.0 56% 2,438 32,701
text/smath/01 This component is linked to the LibreOffice Help – 7.0/auxiliary repository. MPL-2.0 73% 406 3,041 3
text/shared/optionen This component is linked to the LibreOffice Help – 7.0/auxiliary repository. MPL-2.0 82% 336 6,130
text/shared/02 This component is linked to the LibreOffice Help – 7.0/auxiliary repository. MPL-2.0 91% 179 5,178
text/shared/06 This component is linked to the LibreOffice Help – 7.0/auxiliary repository. MPL-2.0 96% 2 7
text/swriter/01 This component is linked to the LibreOffice Help – 7.0/auxiliary repository. MPL-2.0 97% 86 1,288
auxiliary MPL-2.0

Translation Information

Project website www.libreoffice.org
Mailing list for translators l10n@global.libreoffice.org
Translation process
  • Translations can be made directly.
  • Translation suggestions can be made.
  • Any authenticated user can contribute.
  • The translation uses bilingual files.
Translation license Mozilla Public License 2.0
Filemask */helpcontent2/source/text/schart/01.po
Translation file nb/helpcontent2/source/text/schart/01.po
Committed changes 5 months ago
For <emph>power regression</emph> curves a transformation to a linear model takes place. The power regression follows the equation <item type="literal">y=b*x</item><sup><item type="literal">a</item></sup>, which is transformed to <item type="literal">ln(y)=ln(b)+a*ln(x)</item>.
For <emph>potensregresjonskurver </emph>skjer en omgjøring til en lineær modell. Potensregresjon</emph> følger ligningen <item type="literal">y=b*x</item><sup><item type="literal">a</item></sup>, som gjøres om til <item type="literal">ln(y)=ln(b)+a*ln(x)</item>.
5 months ago
For <emph>power regression</emph> curves a transformation to a linear model takes place. The power regression follows the equation <item type="literal">y=b*x</item><sup><item type="literal">a</item></sup>, which is transformed to <item type="literal">ln(y)=ln(b)+a*ln(x)</item>.
For <emph>potensregresjonskurver </emph>skjer en omgjøring til en lineær modell. Potensregresjon</emph> følger ligningaen <item type="literal">y=b*x^</item><sup><item type="literal">a</item></sup>, som gjøres om til <item type="literal">ln(y)=ln(b)+a*ln(x)</item>.
5 months ago
For <emph>power regression</emph> curves a transformation to a linear model takes place. The power regression follows the equation <item type="literal">y=b*x</item><sup><item type="literal">a</item></sup>, which is transformed to <item type="literal">ln(y)=ln(b)+a*ln(x)</item>.
For <emph>potensregresjonskurver </emph>skjer en omgjøring til en lineær modell. <emph>Potensregresjon</emph> følger ligninga <item type="literal">y=b*x^a</item>, som gjøres om til <item type="literal">ln(y)=ln(b)+a*ln(x)</item>.
5 months ago
For <emph>power regression</emph> curves a transformation to a linear model takes place. The power regression follows the equation <item type="literal">y=b*x</item><sup><item type="literal">a</item></sup>, which is transformed to <item type="literal">ln(y)=ln(b)+a*ln(x)</item>.
For <emph>potensregresjonskurver </emph>skjer en omgjøring til en lineær modell. <emph>Potensregresjon</emph> følger ligninga <item type="literal">y=b*x^a</item>, som gjøres om til <item type="literal">ln(y)=ln(b)+a*ln(x)</item>.
5 months ago
New contributor 5 months ago
Resource update 6 months ago
Browse all translation changes

Statistics

Percent Strings Words Chars
Total 983 12,760 94,406
Translated 100% 983 12,760 94,406
Needs editing 0% 0 0 0
Failing checks 0% 0 0 0

Last activity

Last change Aug. 1, 2020, 3:01 p.m.
Last author Karl Morten Ramberg

Daily activity

Daily activity

Weekly activity

Weekly activity